topmenu 900x100

In-depth cleaning instead of superficial cleaning. With the original air and room cleaning technology by DELPHIN! The power within the water!

Allergy-free area due to perfect cleanliness!

Water vortices create negative ions which are stimulating. The DELPHIN binds the dust in the air with water by creating a water vortex. This creates a clean spell in your home!

A clean spell and clean air.

We picked the name DELPHIN because its element is water. The DELPHIN is powerful, elegant, intelligent and a friend of man. The power within the water!

Powerful and intelligent

In-depth cleaning instead of superficial cleaning. With the original air and room cleaning technology by DELPHIN! The power within the water!

Breathe freely at last!

In-depth cleaning instead of superficial cleaning. With the original air and room cleaning technology by DELPHIN! The power within the water!

Allergy-free area due to perfect cleanliness!

Water vortices create negative ions which are stimulating. The DELPHIN binds the dust in the air with water by creating a water vortex. This creates a clean spell in your home!

A clean spell and clean air.

We picked the name DELPHIN because its element is water. The DELPHIN is powerful, elegant, intelligent and a friend of man. The power within the water!

Powerful and intelligent

In-depth cleaning instead of superficial cleaning. With the original air and room cleaning technology by DELPHIN! The power within the water!

Breathe freely at last!

Deckblatt der Untersuchung des Delphin in Moskau an der Stetschenow Akademie

MINISTRY OF HEALTH CARE AND MEDICAL INDUSTRY OF THE RUSSIAN FEDERATION

 

OF THE RUSSIAN FEDERATION

 

THE MOSCOW MEDICAL ACADEMY SETSCHENOW

 


IN ACCORDANCE WITH
the director of the Russian Research Institute for Medical Technology B. 1. Leonow 21. Februar 1996

CONFIRMED by the project manager for scientific research at the Moscow Medical Academy Setschenow
Professor S. W. Gratschow
21 February 1996

REPORT

ABOUT THE SCIENTIFIC RESEARCH AND

EXPERT EVALUATION OF THE AIR CLEANING SYSTEM

"DELPHIN"ABOUT ITS EFFECTIVENESS IN REMOVING MICROORGANISMS

FROM CLOSED OFF ROOMS

 

Head of the scientific research laboratory for biomedical technology is Dalin M.W.

MOSKAU 1996

INTRODUCTION


In accordance with the request of the customer as well as with the technical assignment (and confirmed by the Russian Scientific Research Institute for Medical Technology), the conduct of the expert evaluation - concerning the effectiveness of the air-cleaning system DELPHIN to remove microorganisms out of the air of closed off rooms - has been planned.

Previous tests at the Scientific Research Institute for Pulmonology (in accordance with the Ministry of Health Care of the Russian Federation) have shown that this system can remove 95 – 96 % of microparticles of the size of 5 micron out of the room air and can suck in 100 % of fungal spores, asbestos fibres, pollen and dust mites, especially house dust mites.

According to data from the chemical-pharmaceutical laboratory in Isny / Allgäu, the amount of colony forming units of moulds and yeasts, accumulated due to bed making, can be reduced by the DELPHIN in a short amount of time to a level beneath the microbial load of outside air.

The tests conducted by the Russian National Medical University and in accordance with the clinical city hospital number 64 have shown that the DELPHIN has significantly reduced the total viable count in the air of the closed off rooms of the emergency department after only 20 minutes run-time. Meaning the amount of colony forming units of Staphylococcus epidermis, determined by Koch’s postulates, was reduced from 12 to 9. Even moulds and yeasts were removed and the amount of colony forming units of gram-negative bacteria was decreased from 2 to 1.

The results of these tests are obviously positive, however, it was impossible to assess with the garnered data, the full scope of the technical parameters of the cleaning and the limit of efficiency of the appliance. In order to expand the application of the appliance, finding an answer to this question is more or less pivotal. In accordance with the above-mentioned, the following tasks were set:

- Tests of the appliance „DELPHIN“ under the following conditions: conduct controlled tests to clean the air when the air is being pollinated by bacteria aerosols in the target concentration;
- determine critical values of microbial load in the air that the appliance „DELPHIN“ can clean effectively;
- determine optimal working times of the appliance.

The set tasks were executed by using spray chambers.

2.1. Tests on the efficiency of the air cleaning at a low level of airborne germs

Since the above-mentioned tests did not allow a determination of a limit of efficiency of the DELPHIN when it comes to the elimination of bacteria, we thought it useful to raise the level of airborne germs in the spray chamber.

Chart 1:

Concentration of microorganisms in the air entering and exiting the appliance during the spraying with a dry biomass

Duration of sampling in min.

Concentration of microbes in 1 cubic metre of air

 

E.coli

C. scotti

S. epidermidis

 

Entry

Exit

Entry

Exit

Entry

Exit

1

400 000

0

2 300 000

0

2 900 000

0

2

130 000

0

740 000

0

560 000

0

3

60 000

0

380 000

0

483 000

0

4

4 000

0

20 000

0

25 000

0

10

0

0

1 000

0

1 200

2000

The presented data shows that all microorganisms are removed by the appliance at the set level of efficiency. It was determined that while the appliance cleaned the air, the microbial load in the air of the chamber was reduced significantly and after 10 minutes it reached a level that fell below the sensitivity limit of the indicator.

 

2.2. Tests on the efficiency of the air cleaning at a high level or airborne germs

Chart 2:

Concentration of microorganisms in the air entering and exiting the appliance

Zeitdauer der Probenahme in Min.

Konzentration der lebensfähigen Zellen E. coli in 1 Kubikmeter Luft

 

Eingang

Ausgang

1

1200 000 000

0

2

1800 000 000

200 000

3

60 000 000

3 600 000

4

28 000 000

7 200 000

10

2 000 000

117 000 000

This data shows that even at a high concentration of E. coli, the concentration of microorganisms rapidly reduces while the appliance is cleaning the air.
This makes it possible to determine and assess the limit of efficiency of the appliance. As shown in the chart, this figure increases with the duration of the emission of the microbial load in the air. The retention rate is nearly 99.9 %. Therefore, we can say that the appliance can clean 98 % of the air, even if it has a high microbial load, within 10 minutes, although the level of efficiency rapidly decreases afterwards.

 

CONCLUSION

The conducted tests show that the appliance DELPHIN is proven to be highly efficient when it comes to eliminating bacteria in the air of a closed off room. It reduces the concentration of microorganisms by 99 % compared to the initial figure. This figure remains even if the appliance emits air with a high germ count.

It is most effect with removing microorganisms such as moulds and coli bacteria, however, a little less effective with removing Staphylococcus epidermis. The high efficiency of the appliance is guaranteed due to constructional features – the separation and absorption of the microorganisms by a liquid absorbent.

We could determine that the efficiency of the air cleaning depends on how long the appliance is used, i.e. the volume of air that is being absorbed and emitted by the appliance. The mentioned level of cleanliness is determined by the speed at which microorganisms accumulate in the absorber.

We determined a limit of contamination, done by the bacteria mass to the absorber, at which no determinable microbes are emitted from the appliance. This limit was at 2.4 x 106 colony forming units of coli bacteria in 1 ml of liquid absorbent. A transgression of this figure leads to a reduction of the efficiency of the air cleaning. The speed at which this limit is reached depends on the duration of uninterrupted run-time and the level of microbial load in the air that is absorbed by the appliance. Therefore, it is possible to use this appliance cyclically whereas the absorber should be exchanged periodically.

It has to be taken into account that when the appliance DELPHIN is used, secondary aerosol gases form and therefore it is prohibited to use it in rooms with different purposes in medical facilities without exchanging the water in the appliance first.

The high efficiency to clean the air even of a high level of airborne germs makes it possible to expand the operating range of the appliance. An expansion towards, e.g., health resorts or factories for microbiological production, where it is pivotal to protect the manufactured product from the contamination with foreign bacterial flora and also to not allow the scattering of microbial load in the air of the working area.

Consummator, the leading scientific staff member Krawzow E.G.

Deckblatt der Untersuchung des Delphin in Moskau an der Stetschenow Akademie

MINISTRY OF HEALTH CARE AND MEDICAL INDUSTRY OF THE RUSSIAN FEDERATION

 

OF THE RUSSIAN FEDERATION

 

THE MOSCOW MEDICAL ACADEMY SETSCHENOW

 


IN ACCORDANCE WITH
the director of the Russian Research Institute for Medical Technology B. 1. Leonow 21. Februar 1996

CONFIRMED by the project manager for scientific research at the Moscow Medical Academy Setschenow
Professor S. W. Gratschow
21 February 1996

REPORT

ABOUT THE SCIENTIFIC RESEARCH AND

EXPERT EVALUATION OF THE AIR CLEANING SYSTEM

"DELPHIN"ABOUT ITS EFFECTIVENESS IN REMOVING MICROORGANISMS

FROM CLOSED OFF ROOMS

 

Head of the scientific research laboratory for biomedical technology is Dalin M.W.

MOSKAU 1996

INTRODUCTION


In accordance with the request of the customer as well as with the technical assignment (and confirmed by the Russian Scientific Research Institute for Medical Technology), the conduct of the expert evaluation - concerning the effectiveness of the air-cleaning system DELPHIN to remove microorganisms out of the air of closed off rooms - has been planned.

Previous tests at the Scientific Research Institute for Pulmonology (in accordance with the Ministry of Health Care of the Russian Federation) have shown that this system can remove 95 – 96 % of microparticles of the size of 5 micron out of the room air and can suck in 100 % of fungal spores, asbestos fibres, pollen and dust mites, especially house dust mites.

According to data from the chemical-pharmaceutical laboratory in Isny / Allgäu, the amount of colony forming units of moulds and yeasts, accumulated due to bed making, can be reduced by the DELPHIN in a short amount of time to a level beneath the microbial load of outside air.

The tests conducted by the Russian National Medical University and in accordance with the clinical city hospital number 64 have shown that the DELPHIN has significantly reduced the total viable count in the air of the closed off rooms of the emergency department after only 20 minutes run-time. Meaning the amount of colony forming units of Staphylococcus epidermis, determined by Koch’s postulates, was reduced from 12 to 9. Even moulds and yeasts were removed and the amount of colony forming units of gram-negative bacteria was decreased from 2 to 1.

The results of these tests are obviously positive, however, it was impossible to assess with the garnered data, the full scope of the technical parameters of the cleaning and the limit of efficiency of the appliance. In order to expand the application of the appliance, finding an answer to this question is more or less pivotal. In accordance with the above-mentioned, the following tasks were set:

- Tests of the appliance „DELPHIN“ under the following conditions: conduct controlled tests to clean the air when the air is being pollinated by bacteria aerosols in the target concentration;
- determine critical values of microbial load in the air that the appliance „DELPHIN“ can clean effectively;
- determine optimal working times of the appliance.

The set tasks were executed by using spray chambers.

2.1. Tests on the efficiency of the air cleaning at a low level of airborne germs

Since the above-mentioned tests did not allow a determination of a limit of efficiency of the DELPHIN when it comes to the elimination of bacteria, we thought it useful to raise the level of airborne germs in the spray chamber.

Chart 1:

Concentration of microorganisms in the air entering and exiting the appliance during the spraying with a dry biomass

Duration of sampling in min.

Concentration of microbes in 1 cubic metre of air

 

E.coli

C. scotti

S. epidermidis

 

Entry

Exit

Entry

Exit

Entry

Exit

1

400 000

0

2 300 000

0

2 900 000

0

2

130 000

0

740 000

0

560 000

0

3

60 000

0

380 000

0

483 000

0

4

4 000

0

20 000

0

25 000

0

10

0

0

1 000

0

1 200

2000

The presented data shows that all microorganisms are removed by the appliance at the set level of efficiency. It was determined that while the appliance cleaned the air, the microbial load in the air of the chamber was reduced significantly and after 10 minutes it reached a level that fell below the sensitivity limit of the indicator.

 

2.2. Tests on the efficiency of the air cleaning at a high level or airborne germs

Chart 2:

Concentration of microorganisms in the air entering and exiting the appliance

Zeitdauer der Probenahme in Min.

Konzentration der lebensfähigen Zellen E. coli in 1 Kubikmeter Luft

 

Eingang

Ausgang

1

1200 000 000

0

2

1800 000 000

200 000

3

60 000 000

3 600 000

4

28 000 000

7 200 000

10

2 000 000

117 000 000

This data shows that even at a high concentration of E. coli, the concentration of microorganisms rapidly reduces while the appliance is cleaning the air.
This makes it possible to determine and assess the limit of efficiency of the appliance. As shown in the chart, this figure increases with the duration of the emission of the microbial load in the air. The retention rate is nearly 99.9 %. Therefore, we can say that the appliance can clean 98 % of the air, even if it has a high microbial load, within 10 minutes, although the level of efficiency rapidly decreases afterwards.

 

CONCLUSION

The conducted tests show that the appliance DELPHIN is proven to be highly efficient when it comes to eliminating bacteria in the air of a closed off room. It reduces the concentration of microorganisms by 99 % compared to the initial figure. This figure remains even if the appliance emits air with a high germ count.

It is most effect with removing microorganisms such as moulds and coli bacteria, however, a little less effective with removing Staphylococcus epidermis. The high efficiency of the appliance is guaranteed due to constructional features – the separation and absorption of the microorganisms by a liquid absorbent.

We could determine that the efficiency of the air cleaning depends on how long the appliance is used, i.e. the volume of air that is being absorbed and emitted by the appliance. The mentioned level of cleanliness is determined by the speed at which microorganisms accumulate in the absorber.

We determined a limit of contamination, done by the bacteria mass to the absorber, at which no determinable microbes are emitted from the appliance. This limit was at 2.4 x 106 colony forming units of coli bacteria in 1 ml of liquid absorbent. A transgression of this figure leads to a reduction of the efficiency of the air cleaning. The speed at which this limit is reached depends on the duration of uninterrupted run-time and the level of microbial load in the air that is absorbed by the appliance. Therefore, it is possible to use this appliance cyclically whereas the absorber should be exchanged periodically.

It has to be taken into account that when the appliance DELPHIN is used, secondary aerosol gases form and therefore it is prohibited to use it in rooms with different purposes in medical facilities without exchanging the water in the appliance first.

The high efficiency to clean the air even of a high level of airborne germs makes it possible to expand the operating range of the appliance. An expansion towards, e.g., health resorts or factories for microbiological production, where it is pivotal to protect the manufactured product from the contamination with foreign bacterial flora and also to not allow the scattering of microbial load in the air of the working area.

Consummator, the leading scientific staff member Krawzow E.G.

Plus X Award
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.